- Page 1
- Page 2 - Page 3 - Page 4 - Page 5 - Page 6 - Page 7 - Page 8 - Page 9 - Page 10 - Page 11 - Page 12 - Page 13 - Page 14 - Page 15 - Page 16 - Page 17 - Page 18 - Page 19 - Page 20 - Page 21 - Page 22 - Page 23 - Page 24 - Page 25 - Page 26 - Page 27 - Page 28 - Page 29 - Page 30 - Page 31 - Page 32 - Page 33 - Page 34 - Page 35 - Page 36 - Page 37 - Page 38 - Page 39 - Page 40 - Page 41 - Page 42 - Page 43 - Page 44 - Page 45 - Page 46 - Page 47 - Page 48 - Page 49 - Page 50 - Page 51 - Page 52 - Page 53 - Page 54 - Page 55 - Page 56 - Page 57 - Page 58 - Page 59 - Page 60 - Page 61 - Page 62 - Page 63 - Page 64 - Page 65 - Page 66 - Page 67 - Page 68 - Page 69 - Page 70 - Page 71 - Page 72 - Page 73 - Page 74 - Page 75 - Page 76 - Page 77 - Page 78 - Page 79 - Page 80 - Page 81 - Page 82 - Page 83 - Page 84 - Page 85 - Page 86 - Page 87 - Page 88 - Page 89 - Page 90 - Page 91 - Page 92 - Page 93 - Page 94 - Page 95 - Page 96 - Page 97 - Page 98 - Page 99 - Page 100 - Page 101 - Page 102 - Page 103 - Page 104 - Page 105 - Page 106 - Page 107 - Page 108 - Page 109 - Page 110 - Page 111 - Page 112 - Page 113 - Page 114 - Page 115 - Page 116 - Page 117 - Page 118 - Page 119 - Page 120 - Page 121 - Page 122 - Page 123 - Page 124 - Page 125 - Page 126 - Page 127 - Page 128 - Page 129 - Page 130 - Page 131 - Page 132 - Page 133 - Page 134 - Page 135 - Page 136 - Page 137 - Page 138 - Page 139 - Page 140 - Page 141 - Page 142 - Page 143 - Page 144 - Page 145 - Page 146 - Page 147 - Page 148 - Page 149 - Page 150 - Page 151 - Page 152 - Page 153 - Page 154 - Page 155 - Page 156 - Page 157 - Page 158 - Page 159 - Page 160 - Page 161 - Page 162 - Page 163 - Page 164 - Page 165 - Page 166 - Page 167 - Page 168 - Page 169 - Page 170 - Page 171 - Page 172 - Page 173 - Page 174 - Page 175 - Page 176 - Page 177 - Page 178 - Page 179 - Page 180 - Page 181 - Page 182 - Page 183 - Page 184 - Page 185 - Page 186 - Page 187 - Page 188 - Page 189 - Page 190 - Page 191 - Page 192 - Page 193 - Page 194 - Page 195 - Page 196 - Page 197 - Page 198 - Page 199 - Page 200 - Page 201 - Page 202 - Page 203 - Page 204 - Page 205 - Page 206 - Page 207 - Page 208 - Page 209 - Page 210 - Page 211 - Page 212 - Flash version © UniFlip.com |
WPI’s Low-Noise Amplifiers Outperform Cheap Imitations
AMPLIFIERS, ELECTROMETERS
A
n amplifier, in simplest terms, is an electronic device that magnifies an input signal. However, the way an amplifier is designed to handle noise and bandwidth limitations greatly affects the quality and sustainability of the final output signal.
determined by the maximum voltage of the power supply. If the amplitude of the output signal is too large for the output range, part of the signal is cut off (clipped). • Rail – The upper or lower limit of the amplifier range is called a rail. Signals that exceed the rail cannot be faithfully reproduced. • DC Offset – DC offsets can appear in biological preparations. This offset is the amount the output signal is displaced away from a zero reference point, and it is usually a result of the potential difference at the electrode’s tip.
reproduced. This is called “hitting the rail.” In our example, a 1.0μV input signal at an ×106 gain would generate a 1.0V output signal. Since the power supply is rated up to +5.0V, this output signal is clearly visible. If the input signal in this example is greater than 5.0μV, the output signal would be greater than +5.0V. Since 5.0V is the top of the range that the power supply is capable of producing, the output signal hits the upper rail and gets cut off. This amplifier will give a +5.0V DC output signal for all input signals greater than or equal to 5.0μV. In this instance, a smaller gain factor should be used to bring the output signal back into the dynamic output range of the amplifier. Noise Limits Amplifier Useability All electronic devices produce their own internal electronic noise, an unavoidable signal that can mask the output signal. For example, if the input signal is 2mV and the noise is 1mV, the signal to noise ratio is two to one (2:1), and the output signal would be undetectable. In this case, it is nearly impossible to discern which part of the output is generated by noise and which part is the desired signal. (Fig. 1)
Signal vs. Noise
Defining terms
To knowledgeably discuss amplifiers, let’s define a few terms. • Gain – The gain is the multiplier defining how much the amplitude of an input signal is increased. A signal with an ×1 gain is not amplified. An ×10 gain produces an output signal ten times greater than the input signal. • Noise – Any unwanted signal fluctuations are called noise. While noise can also result from external sources, for the purpose of this discussion, we are primarily concerned with the noise resulting from the inner workings of the electronic device, our amplifier. This intrinsic noise is called shot (or schott) noise. • Signal to Noise Ratio (SNR) – The ratio of the output signal to the noise of the amplifier is called the signal to noise ratio. The smaller the shot noise signal in an amplifier in comparison with the output signal, the easier the desired signal is to discriminate. When engineering an amplifier, the SNR may be improved by boosting the first stage gain to yield a larger output signal or by using quality components to minimize the shot noise level of the amplifier. • Output Range – The output range determines the maximum output signal that can be generated with the amplifier. It is
How does an amplifier work?
Power Supply Rails Limits the Range In a perfect world an input signal can be infinitely multiplied by the gain factor to determine the output signal. For example: Input Signal 2mV 2mV 2mV 2mV 2mV Gain Output Signal ×1 2mV ×2 4mV ×10 20mV ×100 200mV ×10,000 20V
In the real world, however, the power supply rails limit the possible output range of the amplifier. For example, a bio-amplifier could have a range of ±5.0V. In order for the output signal to be faithfully reproduced, the input signal times the gain factor must fall within the voltage window set by the power rails. Otherwise, the output signal will go off scale, and the input signal will not be faithfully
Range
{
+5.0V
Upper Rail
Signal Noise
-5.0V
Lower Rail
Fig. 1–The higher the signal to noise ratio, the more discernable the desired signal.
72
ORDER TOLL-FREE: 866-606-1974 (U.S. only) World Precision Instruments • Tel: 941-371-1003 • Fax: 941-377-5428 • E-mail: sales@wpiinc.com • Internet: www.wpiinc.com
|