- Page 1
- Page 2 - Page 3 - Page 4 - Page 5 - Page 6 - Page 7 - Page 8 - Page 9 - Page 10 - Page 11 - Page 12 - Page 13 - Page 14 - Page 15 - Page 16 - Page 17 - Page 18 - Page 19 - Page 20 - Page 21 - Page 22 - Page 23 - Page 24 - Page 25 - Page 26 - Page 27 - Page 28 - Page 29 - Page 30 - Page 31 - Page 32 - Page 33 - Page 34 - Page 35 - Page 36 - Page 37 - Page 38 - Page 39 - Page 40 - Page 41 - Page 42 - Page 43 - Page 44 - Page 45 - Page 46 - Page 47 - Page 48 - Page 49 - Page 50 - Page 51 - Page 52 - Page 53 - Page 54 - Page 55 - Page 56 - Page 57 - Page 58 - Page 59 - Page 60 - Page 61 - Page 62 - Page 63 - Page 64 - Page 65 - Page 66 - Page 67 - Page 68 - Page 69 - Page 70 - Page 71 - Page 72 - Page 73 - Page 74 - Page 75 - Page 76 - Page 77 - Page 78 - Page 79 - Page 80 - Page 81 - Page 82 - Page 83 - Page 84 - Page 85 - Page 86 - Page 87 - Page 88 - Page 89 - Page 90 - Page 91 - Page 92 - Page 93 - Page 94 - Page 95 - Page 96 - Page 97 - Page 98 - Page 99 - Page 100 - Page 101 - Page 102 - Page 103 - Page 104 - Page 105 - Page 106 - Page 107 - Page 108 - Page 109 - Page 110 - Page 111 - Page 112 - Page 113 - Page 114 - Page 115 - Page 116 - Page 117 - Page 118 - Page 119 - Page 120 - Page 121 - Page 122 - Page 123 - Page 124 - Page 125 - Page 126 - Page 127 - Page 128 - Page 129 - Page 130 - Page 131 - Page 132 - Page 133 - Page 134 - Page 135 - Page 136 - Page 137 - Page 138 - Page 139 - Page 140 - Page 141 - Page 142 - Page 143 - Page 144 - Page 145 - Page 146 - Page 147 - Page 148 - Page 149 - Page 150 - Page 151 - Page 152 - Page 153 - Page 154 - Page 155 - Page 156 - Page 157 - Page 158 - Page 159 - Page 160 - Page 161 - Page 162 - Page 163 - Page 164 - Page 165 - Page 166 - Page 167 - Page 168 - Page 169 - Page 170 - Page 171 - Page 172 - Page 173 - Page 174 - Page 175 - Page 176 - Page 177 - Page 178 - Page 179 - Page 180 - Page 181 - Page 182 - Page 183 - Page 184 - Page 185 - Page 186 - Page 187 - Page 188 - Page 189 - Page 190 - Page 191 - Page 192 - Page 193 - Page 194 - Page 195 - Page 196 - Page 197 - Page 198 - Page 199 - Page 200 - Page 201 - Page 202 - Page 203 - Page 204 - Page 205 - Page 206 - Page 207 - Page 208 - Page 209 - Page 210 - Page 211 - Page 212 - Flash version © UniFlip.com |
Optical Detection Systems
A unique multiple long pathlength sample cell for absorbance spectroscopy
UltraPath™
Appearance of instruments presently in these systems differ from those pictured here.
● Process Control & Oceanography ● Rugged system for laboratory and onboard measuring ● Portable & easy to use ● User-selected optical path lengths: 2, 10, 50 & 200 cm ● Highly sensitive and stable
SPEC TROS CO PY
UltraPath™ is a unique high-performance spectrophotometer system offering user-selectable optical path lengths of 2, 10, 50 and 200 cm. The instrument operates in the wavelength range of 250 to 730 (UPUV) or 380 to 730 nm (UPVIS) and has an exceptional dynamic range. Designed for the detection of low absorbing species in aqueous solutions, UltraPath is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the lab or in the field.
Background
UltraPath was developed by WPI under a collaborative agreement with NASA (Stennis Space Center) for the spectroscopic determination of colored dissolved organic matter (CDOM) in seawater and fresh water environments. It can be used in the laboratory and in the field (i.e., at sea). CDOM concentrations vary significantly between open ocean samples with low CDOM (e.g., 0.007 m-1 at 380 nm), and high CDOM freshwater environments (e.g., 10-20 m-1 at 380 nm). To address these problems the design requirements of UltraPath mandated the development of a rugged portable system capable of high sensitivity measurements across a wide dynamic range. The UltraPath system meets these stringent design criteria and enables reliable measurement of CDOM in the range of 0.002 m-1 to 200 m-1 (250 to 730 nm).
substances to the cell wall. In particular, the design greatly minimizes the problems commonly found with flow cells of long optical pathlengths: the risk of trapping dust particles, fibers or particulate matter inside the cell. The UltraPath system includes a low noise photodiode array-based spectrometer module (TIDAS I: FWHM = 5 nm, noise <0.2 mAU) and a light source (D4H with UPUV; FO6000 with UPVIS) to measure sample absorption. Light is coupled from the light source to the sample cell and from the sample cell to the detector via two fused silica fibers. A peristaltic pump (PeriPro-4LS) is utilized to draw the sample into the UltraPath sample cell.
35 30
Sarasota Bay & Pond CDOM
Sarasota Bay Pond
Absorption [1/m]
25 20 15 10 5 0 -5 250 350 450 550
Design
UltraPath has four optical pathlengths contained within a single sample cell (i.e., 2 cm, 10 cm, 50 cm and 200 cm). The pathlengths are userselectable, offering a very high sensitivity and an extended dynamic range for UV and VIS absorbance measurements. The fluid path of the sample cell is optimized to produce a laminar flow that is virtually free of interference from trapped air bubbles and adherence of dissolved
650
750
Wavelength [nm]
Fig. 1 — Two typical absorption spectra measured using UltraPath. The sample labeled “Sarasota Bay” is a CDOM sample with 34 PSU salinity collected from Sarasota Bay (Nov. 2007), and the sample labeled “Pond” is a highly concentrated CDOM sample collected from a local pond in Sarasota, Florida (Nov. 2007).
186
UK: Tel: +44 (0)1462 424700 • wpiuk@wpi-europe.com
World Precision Instruments
www.wpiinc.com Germany: Tel: +49 (0)30-6188845 • wpide@wpi-europe.com US: Tel: 941-371-1003 • sales@wpiinc.com
|