- Page 1
- Page 2 - Page 3 - Page 4 - Page 5 - Page 6 - Page 7 - Page 8 - Page 9 - Page 10 - Page 11 - Page 12 - Page 13 - Page 14 - Page 15 - Page 16 - Page 17 - Page 18 - Page 19 - Page 20 - Page 21 - Page 22 - Page 23 - Page 24 - Page 25 - Page 26 - Page 27 - Page 28 - Page 29 - Page 30 - Page 31 - Page 32 - Page 33 - Page 34 - Page 35 - Page 36 - Page 37 - Page 38 - Page 39 - Page 40 - Page 41 - Page 42 - Page 43 - Page 44 - Page 45 - Page 46 - Page 47 - Page 48 - Page 49 - Page 50 - Page 51 - Page 52 - Page 53 - Page 54 - Page 55 - Page 56 - Page 57 - Page 58 - Page 59 - Page 60 - Page 61 - Page 62 - Page 63 - Page 64 - Page 65 - Page 66 - Page 67 - Page 68 - Page 69 - Page 70 - Page 71 - Page 72 - Page 73 - Page 74 - Page 75 - Page 76 - Page 77 - Page 78 - Page 79 - Page 80 - Page 81 - Page 82 - Page 83 - Page 84 - Page 85 - Page 86 - Page 87 - Page 88 - Page 89 - Page 90 - Page 91 - Page 92 - Page 93 - Page 94 - Page 95 - Page 96 - Page 97 - Page 98 - Page 99 - Page 100 - Page 101 - Page 102 - Page 103 - Page 104 - Page 105 - Page 106 - Page 107 - Page 108 - Page 109 - Page 110 - Page 111 - Page 112 - Page 113 - Page 114 - Page 115 - Page 116 - Page 117 - Page 118 - Page 119 - Page 120 - Page 121 - Page 122 - Page 123 - Page 124 - Page 125 - Page 126 - Page 127 - Page 128 - Page 129 - Page 130 - Page 131 - Page 132 - Page 133 - Page 134 - Page 135 - Page 136 - Page 137 - Page 138 - Page 139 - Page 140 - Page 141 - Page 142 - Page 143 - Page 144 - Page 145 - Page 146 - Page 147 - Page 148 - Page 149 - Page 150 - Page 151 - Page 152 - Page 153 - Page 154 - Page 155 - Page 156 - Page 157 - Page 158 - Page 159 - Page 160 - Page 161 - Page 162 - Page 163 - Page 164 - Page 165 - Page 166 - Page 167 - Page 168 - Page 169 - Page 170 - Page 171 - Page 172 - Page 173 - Page 174 - Page 175 - Page 176 - Page 177 - Page 178 - Page 179 - Page 180 - Page 181 - Page 182 - Page 183 - Page 184 - Page 185 - Page 186 - Page 187 - Page 188 - Page 189 - Page 190 - Page 191 - Page 192 - Page 193 - Page 194 - Page 195 - Page 196 - Page 197 - Page 198 - Page 199 - Page 200 - Page 201 - Page 202 - Page 203 - Page 204 - Page 205 - Page 206 - Page 207 - Page 208 - Page 209 - Page 210 - Page 211 - Page 212 - Flash version © UniFlip.com |
Mayagüez Bay CDOM
0.09 Absorption [1/m] 0.07 0.05 0.03 0.01 -0.01 380 480 580 Wavelength [nm] 680 Mayagüez Bay
“Determining CDOM Absorption Spectra in Diverse Coastal Environments Using a Multiple Pathlength, Liquid Core Waveguide System”, Continental Shelf Research, July 2002, 22:9, p 1301-1310. “System Analyzes Water Samples at Sea”, NASA Aerospace Technology Innovation, 2001, 9 (5). http://nctn.hq.nasa.gov/innovation/innovation95/3techtrans2.html R. L. Miller and E. D’Sa. “Evaluating the influence of CDOM on the remote sensing signal in the Mississippi River Bight”. In Eos Transactions AGU Ocean Sciences, 2002. Honolulu, HI, p. 171. E. D’Sa, R.L. Miller and R. Trzaska. “Aparent Optical Properties in Waters Influenced by the Mississippi River”, Proceedings of the Seventh Thematic Conference, Remote Sensing for Marine and Coastal Environments, 2002, 6 pg, Miami, FL. R. L. Miller, C. Hall, C. Del Castillo, B. McKee and M. Dagg. “Bio-optical Properties of the Mississippi River Plume and Adjacent Shelf.” ASLO Aquatic Sciences, Albuquerque, NM, 2001. R. L. Miller, M. Belz and S. Y. Liu, “Measuring the absorption of CDOM in the field using a multiple pathlength liquid waveguide system”, Ocean Optics XV, paper 1308, Monaco, October 2000.
Fig. 2 — CDOM Sample “Mayagüez Bay” was collected from the high salinity oligotrophic waters of Mayagüez Bay on the west coast of Puerto Rico (2001). Data courtesy of NASA Stennis Space Center.
A standard PC or laptop (not included) is connected to the TIDAS E via a RJ-45 Ethernet interface. For spectrometer requirements and software options, see TIDAS-E.
Absorbance
0.025 0.02 0.015 0.01 0.005 0 -0.005
Ponceau S measured with 200 cm pathlength
baseline 0.7 nM 1.8 nM 3 nM
125 100 75 50 25 0 -25 µAU/cm
Mobility
The system is designed for mobility. The components of the UltraPath system are designed to function over a broad range of laboratory and field environments.
Samples
Two typical absorption spectra recorded with an UltraPath (UPUV) of a seawater and a fresh water sample collected in November 2007 are shown in Fig. 1. Due to their high absorbance, both samples were analyzed in the 10 cm pathlength. The CDOM sample labeled Mayagüez Bay in Fig. 2 is from oligotrophic, low productive waters with high salinity collected off the west coast of Puerto Rico in the Mayagüez Bay. Special attention should be drawn to the exceptional sensitivity of UltraPath enabling detection of CDOM absorption below 0.03 m-1. To exemplify the performance of the UltraPath in Laboratory Chemistry and Process Control, Ponceau S absorbance was measured with the 200 cm pathlength of an UltraPath. Normalizing the Ponceau absorbance graph to AU/cm, the range of this measurement is 150 μAU with a noise level below 2 μAU peak to peak. Sub-nanomolar concentration of this dye can clearly and reliably be detected, which is a novelty in absorbance based spectroscopy.
400
450
500
550
600
650
700
Wavelength [nm]
Fig. 3 – Ponceau S absorption measured with UltraPath (200 cm cell). Ponceau S was dissolved in Millipore water.
SPEC TROS CO PY
UltraPath Specifications
DYNAMIC RANGE WAVELENGTH RANGE 5 μAU/cm to 1 AU/cm 0.002 m-1 to 200 m-1 250 nm – 730 nm (UPUV) 380 nm – 730 nm (UPVIS) < 0.2 mAU < 1 mAU/h 2, 10, 50 & 200 cm (user selectable) 2 mm 10 mL (at 200 cm pathlength) 1/8” 600 μm Most organic and inorganic solvents UPUV: 44 lb (20 kg) UPVIS: 33 lb (15 kg)
WAVELENGTH RESOLUTION (FWHM) 5 nm NOISE (PEAK TO PEAK) DRIFT OPTICAL PATHLENGTH SAMPLE CELL INNER DIAMETER CELL VOLUME SAMPLE INLET / OUTLET FIBER INPUT/OUTPUT SOLVENT RESISTANCE SHIPPING WEIGHT
Particulate Absorption
Particulate absorption can be measured by the well established Quantitative Filter Technique (QFT). WPI now offers a fiber optic filter holder for Glass Fiber Filters (QFT1, page 206) which can be used with the spectrometer (TIDAS E) and light source (D4H or FO6000) supplied with the UltraPath. With this accessory, particulate absorption can be measured on site, avoiding loss of spectral information due to freezing and shipping particulate samples to a laboratory.
Reference
N. B. Nelson, D. A. Siegel, C. A. Carlson, C. Swan, W. M. Smethie Jr. and S. Khatiwala. 2007. Hydrography of chromophoric dissolved organic matter in the North Atlantic. Deep-Sea Res. I. 54: 710 – 731. V. Kitidis, A. P. Stubbins, G. Uher, R. C. Upstill Goddard, C. S. Law, E. M. S. Woodward, “Variability of chromophoric organic matter in surface waters of the Atlantic Ocean”, Deep Sea Research Part II: Topical Studies, Vol. 53, Issue 14-16, 2006, p. 16661684. R. L. Miller, M. Belz, C. Del Castillo, R. Trzaska,
UPVIS Ultrapath System, Visible Light UPUV Ultrapath System, Ultraviolet & Visible Light The UltraPath system includes: Multiple pathlength cell, Tidas E with TidasDAQ/SpectraView software, FO-6000 light source (UPVIS) or D2H light source (UPUV), two FO-600-SMA1M optical fibers, PeriStar Pro peristaltic pump, silicone tubing, sample injector and Waveguide Cleaning Kit. Specify line voltage 501609 KIT-UPVIS-STARTUP KIT-UPUV-STARTUP 89575 Waveguide Cleaning Kit FO-600-SMA1M, 501609, 72100, 800120, 15807 FO-600-SMA1M, 501609, 72100, D2H-DB, D2H-HB, 15807 QFT1, Fiber Optic Holder for Glass Fiber Filters 187
UK: Tel: +44 (0)1462 424700 • wpiuk@wpi-europe.com
World Precision Instruments
www.wpiinc.com Germany: Tel: +49 (0)30-6188845 • wpide@wpi-europe.com US: Tel: 941-371-1003 • sales@wpiinc.com
|