- Page 1
- Page 2 - Page 3 - Page 4 - Page 5 - Page 6 - Page 7 - Page 8 - Page 9 - Page 10 - Page 11 - Page 12 - Page 13 - Page 14 - Page 15 - Page 16 - Page 17 - Page 18 - Page 19 - Page 20 - Page 21 - Page 22 - Page 23 - Page 24 - Page 25 - Page 26 - Page 27 - Page 28 - Page 29 - Page 30 - Page 31 - Page 32 - Page 33 - Page 34 - Page 35 - Page 36 - Page 37 - Page 38 - Page 39 - Page 40 - Page 41 - Page 42 - Page 43 - Page 44 - Page 45 - Page 46 - Page 47 - Page 48 - Page 49 - Page 50 - Page 51 - Page 52 - Page 53 - Page 54 - Page 55 - Page 56 - Page 57 - Page 58 - Page 59 - Page 60 - Page 61 - Page 62 - Page 63 - Page 64 - Page 65 - Page 66 - Page 67 - Page 68 - Page 69 - Page 70 - Page 71 - Page 72 - Page 73 - Page 74 - Page 75 - Page 76 - Page 77 - Page 78 - Page 79 - Page 80 - Page 81 - Page 82 - Page 83 - Page 84 - Page 85 - Page 86 - Page 87 - Page 88 - Page 89 - Page 90 - Page 91 - Page 92 - Page 93 - Page 94 - Page 95 - Page 96 - Page 97 - Page 98 - Page 99 - Page 100 - Page 101 - Page 102 - Page 103 - Page 104 - Page 105 - Page 106 - Page 107 - Page 108 - Page 109 - Page 110 - Page 111 - Page 112 - Page 113 - Page 114 - Page 115 - Page 116 - Page 117 - Page 118 - Page 119 - Page 120 - Page 121 - Page 122 - Page 123 - Page 124 - Page 125 - Page 126 - Page 127 - Page 128 - Page 129 - Page 130 - Page 131 - Page 132 - Page 133 - Page 134 - Page 135 - Page 136 - Page 137 - Page 138 - Page 139 - Page 140 - Page 141 - Page 142 - Page 143 - Page 144 - Page 145 - Page 146 - Page 147 - Page 148 - Page 149 - Page 150 - Page 151 - Page 152 - Page 153 - Page 154 - Page 155 - Page 156 - Page 157 - Page 158 - Page 159 - Page 160 - Page 161 - Page 162 - Page 163 - Page 164 - Page 165 - Page 166 - Page 167 - Page 168 - Page 169 - Page 170 - Page 171 - Page 172 - Page 173 - Page 174 - Page 175 - Page 176 - Page 177 - Page 178 - Page 179 - Page 180 - Page 181 - Page 182 - Page 183 - Page 184 - Page 185 - Page 186 - Page 187 - Page 188 - Page 189 - Page 190 - Page 191 - Page 192 - Page 193 - Page 194 - Page 195 - Page 196 - Page 197 - Page 198 - Page 199 - Page 200 - Page 201 - Page 202 - Page 203 - Page 204 - Page 205 - Page 206 - Page 207 - Page 208 - Page 209 - Page 210 - Page 211 - Page 212 - Flash version © UniFlip.com |
Filter Holder for Glass Fiber Filters
Simple measurements for particulate absorption
WPI’s filter holder for particulate absorption measurements is specially designed for field use. It is rugged and portable. It performs as well as a laboratory based spectrophotometer. It can be directly connected to WPI’s line of fiber optic spectrometers and light sources. Instead of collecting your samples, transporting them to a laboratory, and accepting the loss of spectral information associated with it (Sosik, 1999), particulate absorption can now be measured on site.
QFT1
other CCD, PDA or scanning type spectrometer with fiber optic capabilities.
Performance
A significant advantage of the filter holder is its large beam diameter of 5 mm, resulting in “averaging out” of larger non-organic particles frequently found on the filter pad when using natural samples. The removable filter fixture allows simple filter alternation and cleaning.
Specifications
GF/F Filter Diameter 25 mm Wavelength Range 280-730 nm * Fiber Optic Connection ∅ 600 μm / SMA Material in contact with filter pad Delrin Weight .....................................0.5 kg (1 lb)
How does it work ?
Particulate absorption of fresh and seawater can be determined by filtering a known amount of sample through a Glass Fiber Filter (GF/F) and measuring the particulate absorption coefficient ap(λ) concentrated on the filter. This technique is called quantitative filter technique (QFT) and corrects for the pathlength amplification, an effect of scattering. The correction of the pathlength amplification and the correction of the non-linear relationship between the optical density of samples on a Whatman GF/F filter and in suspension are discussed in Mitchell (1990).
* Using a TIDAS E spectrometer and D4H UV/VIS light source.
References
Mitchell, B. G., “Algorithms for Determining the Absorption Coefficient of Aquatic Particles Using the Quantitative Filter Technique (QFT)”, SPIE Vol. 1302 Ocean Optics X (1990), 137-148. Sosik, H. M., “Storage of marine particulate samples for light-absorption measurements”, Limnol. Oceanogr., 44(4), 1999, 1139-1141 M. Belz, K. Larsen, K.-F. Klein, “Fiber optic sample cells for polychromatic detection of dissolved and particulate matter in natural waters”, Proc. SPIE, Vol. 6377, Oct 2006, 63770X
SPEC TROS CO PY
Detector and light source requirements
The optical throughput of QFT1 equipped with a classical GF/F filter is very low and requires a matched light source / spectrometer system. WPI’s TIDAS E in combination with WPI’s FO-6000 tungsten light source or D4H deuterium/halogen light source can be used in the 380–730 nm and 280–730 nm wavelength range, respectively. The QFT1 can also be interfaced to any
89575
QFT1, Fiber Optic Holder for Glass Fiber Filters
In-Line Fiber Optic Filter Holder
This In-Line Fiber Optic Filter Holder allows the insertion of optical filters within a fiber optic pathway. The connectors of the filter holder assembly are compatible with WPI’s range of fiber optic jumper cables and can be coupled using SMA or ST connectors. Filters with outer diameters from 8 to 25.4 mm and thicknesses from 2 to 10 mm can be accomodated. The design limits lateral and axial movement of the filter when secured in the holder. Two fiber optic collimators are internally mounted in the holder to pass collimated light through the filter and then refocus the filtered light into the aperture of the output fiber. Spectral range will be largely limited by the bandpass of the optical fibers (from UV to near IR using WPI UV-enhanced cables). 56200 In-Line Fiber Optic Filter Holder (SMA)
UK: Tel: +44 (0)1462 424700 • wpiuk@wpi-europe.com
World Precision Instruments
www.wpiinc.com Germany: Tel: +49 (0)30-6188845 • wpide@wpi-europe.com US: Tel: 941-371-1003 • sales@wpiinc.com
199
|