74020
ISO-DAM8A Isolated, Low Noise Bioamplifier Single Channel Module
- Overview
- Specifications
- Accessories
- Citations
- Related Products
Overview
There are 1 images available to view - click to enlarge and scroll through the product gallery.
ISDB Manual (BRIDGE8/ISO-DAM8A)
/ Download as PDF
Benefits
- Chassis accepts combination of bioamplifiers and transducer amplifiers
- Flexible channel count (1–8) allows expandability
- Notch filter targets AC line noise sources
- Variable gain output amplitude
- Wide ±10V output range
Applications
- Amplifying biopotentials using metal microelectrodes
- Brain slice field potentials
- EAG (Electroantennogram)
- ERG (Electroretinogram)
The ISO-DAM8A is a compact modular standard rack-mountable DC amplifier system. Each channel is electrically isolated from the others and from ground. No current can flow from the input terminals and electrodes. The instrument is intrinsically safe and cannot cause any electrical stimulus or shock to the preparation. In addition, ground loop noise is minimized.
Filters Included with the Amplifier
Systems can be purchased with one, two, three or up to eight preamplifier modules or mixed with Bridge8 transducer amplifier modules. You can then select:
- An appropriate low pass filter setting, gain and offset on the channel amplifier panel.
- Notch filter added to reduce line frequency interference.
- Optional headstage preamplifier (10x gain) allows low noise extracellular (DC) recording with Iso-DAM8A and adds greater signal bandwidth than a shielded cable of the same length.
The Iso-DAM8A amplifier and headstage configuration is optimally suited for use with our metal microelectrodes and can be easily configured for many applications. Each amplifier channel has a coaxial (BNC) connector located on the rear panel.
Configuring Your ISDB System
The ISDB chassis (74030) holds up to eight modules and includes a power supply. You may include any combination of BRIDGE8 Transducer Amplifier modules or ISO-DAM8A single channel modules (74020). If you choose fewer than eight modules, you need to order the ISDB blank panels (74050) to fill the empty slots in the chassis. ISO-DAM8A bioampliers include an 8-pin DIN connector with shielded, unterminated 5' cable. Please specify line voltage when ordering.
When configuring your ISDB system:
- Order a chassis and power supply enclosure (74030)
- Select up to 8 modules (BRIDGE8)
- Order blank panels (74050) to fill empty slots
- 74020 is a DC amplifier
Complete eight channel amplifier system with 74030 chassis showing eight 74020 (ISODAM8A) modules installed
*Also available for BRIDGE8 transducer amplifier modules and blank panels (74050).
*The modules are sold separately.
Specifications
Input Impedance to Gnd, each input | > 1012 Ω DC, 5 picofarads (typical) |
Input leakage current | 10 pA (typical) |
Input DC offset | ±100 mV |
Gain | x10, x100, x1,000, x10,000 |
Common Mode Rejection | >100 dB @ 50/60 Hz |
Equivalent noise signal input | 10 |
Bandwidth Filter Settings | |
High Filter (Low Pass) | 0.1, 0.5, 1, 3, 10 kHz |
Low Filter (High Pass) | 0.1, 1, 10, 300 Hz |
Notch Filter Settings | 50 Hz, 60 Hz |
Output voltage swing | ±7.5 V |
Maximum Output Resistance | 220 Ω |
Power Source | Power Adapter 110-120V/60Hz or 220-240/50Hz |
Enclosure Dimensions | 18 x 43 x 23 cm |
Shipping Weight | 4.5–9.5 kg |
Accessories
Citations
Gaunt, R. A., Prochazka, A., Mushahwar, V. K., Guevremont, L., & Ellaway, P. H. (n.d.). Intraspinal Microstimulation Excites Multisegmental Sensory Afferents at Lower Stimulus Levels Than Local ?-Motoneuron Responses. http://doi.org/10.1152/jn.00061.2006
Liu, X., Demostheous, A., Vanhoestenberghe, A., & Donaldson, N. (n.d.). In vitro evaluation of a high-frequency current-switching stimulation technique for FES applications.
Orr, N., Arnaout, R., Gula, L. J., Spears, D. A., Leong-Sit, P., Li, Q., … Gollob, M. H. (2016). A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation. Nature Communications, 7, 11303. http://doi.org/10.1038/ncomms11303
Heo, C., Park, H., Kim, Y.-T., Baeg, E., Kim, Y. H., Kim, S.-G., & Suh, M. (2016). A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology. Scientific Reports, 6, 27818. http://doi.org/10.1038/srep27818
Brown, N. H., Dobrovolny, H. M., Gauthier, D. J., & Wolf, P. D. (2007). A Fiber-Based Ratiometric Optical Cardiac Mapping Channel Using a Diffraction Grating and Split Detector. Biophysical Journal, 93(1), 254–263. http://doi.org/10.1529/biophysj.106.101154
P. Heiduschka, D. Fischer, S. Thanos "Recovery of visual evoked potentials after regeneratio nof cut retinal ganglion cell axons within the ascending visual pathway in adult rats" Restorative Neurology and Neuroscience 23. 2005: 303-312
Request
Catalogue
Chat
Print