World Precision Instruments

Search the site by KEYWORD


Quick Finder


Testimonials

Researcher, Electrothermal

WPI offer a wide range of products designed for those working in the life science industry but just as importantly they offer great customer support and possess great product knowledge.
read more

TBR1025

TBR1025

One-Channel Free Radical Analyzer



Choose Quantity
  • Overview
  • Specifications
  • Accessories
  • Citations
  • Related Products

Overview

TBR1025 One-Channel Free Radical Analyzer

There are 1 images available to view - click to enlarge and scroll through the product gallery.

TBR Instruction Manual
/ Download as PDF

TBR Datasheet
/ Download as PDF

  • Real-time detection using electrochemical microsensors
  • Integrated system - includes sensors and start-up kit
  • Wide dynamic range for detection
  • Measure
    • Carbon monoxide from 10 nM to 10 µM
    • Nitric oxide from < 0.3 nM to 100 µM
    • Hydrogen peroxide < 10 nM to 100 mM
    • Hydrogen sulfide
    • Glucose
    • Oxygen from 0.1% to 100%

Details

A single channel free radical analyzer includes a sensor of your choice and a start-up kit. To complete the system add a Lab-Trax data logger.

Real-time detection and measurement of a variety of redox-reactive species is fast and easy using the electrochemical (amperometric) detection principle employed in the TBR1025. Simply plug a sensor into the input channel on the front panel and select the current range. Poise voltage can be selected from a range of values tuned for optimal response from WPI sensors. An independent output for real-time monitoring of temperature is also included.

The analyzer utiliszes PC-based data acqusition via our Lab-Trax interface; data traces are displayed and recorded in real-time. The LabScribe software (formerly called Data-Trax) comes pre-configured for single or multiple electrode recording;  filters, gains, and smoothing are all set for optimal results. Data can be viewed making adjustments to smoothing and filter settings without affecting the original stored raw data. Electrode calibration from multiple concentration readings can be input into the software's Multipoint Calibration utility quickly provides a plot and slope calculation for electrode sensitivity determination.

  • Current measurement range from 300 fA to 10 µA (four ranges) permits wide dynamic range for detection
  • Wide bandwidth allows recording of fast events
  • Total galvanic isolation of channel inputs
  • Pre-adjusted selectable Poise voltage values for each type of WPI free radical sensor, as well as an adjustable voltage settings
  • Front panel mounted digital panel meters to monitor poise voltage and sensor current output on each channel simultaneously
  • Front panel BNC output connectors providing a low impedance voltage output signal, suitable for direct connection to any standard data recording device
  • Front panel input connectors designed to provide easy connection to the entire line of WPI free radical sensors

What's Included

(1) TBR1025 Free Radical Analyzer
(1) Sensor of your choice and sensor start-up kit, if applicable
(1) ISO-TEMP-2 Temperature Sensor
(2) 2851 6' BNC Cable 
(1) 91210 Assembly Test Resistor
(1) 91580 Microsensor Cable, if applicable
(1) Potentiometer Adjustment Tool

The Free Radical Analyzer will require a datalogging system (not included). We recommend LAB-TRAX-4

Support Videos

When using a TBR Free Radical Analyzer, accurate measurements of an analyte requires an accurate calibration. The calibration of nitric oxide, hydrogen peroxide and hydrogen sulfide sensors is similar. WPI oxygen and glucose sensors require different methods which will not be discussed here.

The video below shows how to calibrate your oxygen sensor (6 minutes).

Specifications

Power Power 100 ~ 240 VAC, 50-60 Hz,
Operating Temperature (ambient) 0 - 50°C (32 - 122°F)
Operating Humidity (ambient) 15 - 70% RH non-condensing
Warm up Time  
Dimensions 135 X 419 X 217 mm (5.25" X 16.5" X 8.16")
Weight 1.35 kg (3 lb)
Display Functions 18 mm (0.7") LCD readout, 4.5 digit Polarization Voltage (mV) Current input (nA, µA)
Controls Power (on/off) Current Input Range Polarization Voltage
Analog Output Range +/- 10 V (continuous)
Analog Output Impedance 10 kohm
Channel to Channel Isolation >10 Gohm 
Channel to Output Isolation >10 Gohm
Power Supply to AC Line Isolation >100 Mohm
Analog Output Drift  
Temperature Input: Number of Channels 1
Temperature Input: Sensing Element Platinum RTD, 1000 Ohm
Temperature Input: Range 0-100°C
Temperature Input: Accuracy +/- 1°C
Temperature Input: Resolution 0.1°C
Temperature Input: Analog Output 31.25 mV/°C (continuous) 
Amperometric Input: Number of Amperometric Channels 1
Amperometric Input: Signal Bandwidth 0-3 Hz
Amperometric Input: Polarization Voltage (selectable via rotary switch) Nitric Oxide 865 mV 
Amperometric Input: Polarization Voltage (selectable via rotary switch) Hydrogen Sulfide 150mV
Amperometric Input: Polarization Voltage (selectable via rotary switch) Hydrogen Peroxide 450 mV
Amperometric Input: Polarization Voltage (selectable via rotary switch) Glucose 600 mV
Amperometric Input: Polarization Voltage (selectable via rotary switch) Oxygen 700 mV
Amperometric Input: Polarization Voltage (selectable via rotary switch) ADJ (user adjustable) +/- 2500 mV
Polarization Voltage Accuracy +/- 5 mV
Polarization Voltage Display Resolution +/- 1mV
Current measurement Performance: Range +/- 10 Na, +/- 100 nA, +/- 1 µA, +/- 10 µA
Current measurement Performance: Analog Output 1 mV / 1 pA, 1 mV / 10pA, 1 mV / 100pA, 1 mV / 1 µA
Current measurement Performance: Noise @ 3Hz * < 1 pA, < 7 pA, < 70 pA, < 700 pA
Current measurement Performance: Noise @ 0.3 Hz * < 0.3 pA, < 3 pA, < 30 pA, < 300 pA

Notes:

*Instrument performance is measured as the (max-min) over 20 seconds period with open input. Typical values are given at 3 Hz and 0.3 Hz bandwidth.  Typical sensor performance with TBR4100: ISO-NOPF100 noise 0.2 nM NO (

**Sensor noise is measured as the (max-min) over a 20 seconds period with the sensor immersed in 0.1 M CuCl2 solution.

Accessories

Citations

Silveira, N. M., Seabra, A. B., Marcos, F. C. C., Pelegrino, M. T., Machado, E. C., & Ribeiro, R. V. (2019). Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants. Nitric Oxide, 84, 38–44. https://doi.org/10.1016/J.NIOX.2019.01.004

Wang, J., Wang, W., Li, S., Han, Y., Zhang, P., Meng, G., … Ji, Y. (2018). Hydrogen Sulfide As a Potential Target in Preventing Spermatogenic Failure and Testicular Dysfunction. Antioxidants & Redox Signaling, 28(16), 1447–1462. https://doi.org/10.1089/ars.2016.6968

Meng, G., Liu, J., Liu, S., Song, Q., Liu, L., Xie, L., … Ji, Y. (2018). Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. British Journal of Pharmacology, 175(8), 1126–1145. https://doi.org/10.1111/bph.13861

Gonçalves, L. C., Seabra, A. B., Pelegrino, M. T., de Araujo, D. R., Bernardes, J. S., & Haddad, P. S. (2017). Superparamagnetic iron oxide nanoparticles dispersed in Pluronic F127 hydrogel: potential uses in topical applications. RSC Advances, 7(24), 14496–14503. https://doi.org/10.1039/C6RA28633J

Calvo-Begueria, L., Cuypers, B., Van Doorslaer, S., Abbruzzetti, S., Bruno, S., Berghmans, H., … Becana, M. (2017). Characterization of the Heme Pocket Structure and Ligand Binding Kinetics of Non-symbiotic Hemoglobins from the Model Legume Lotus japonicus. Frontiers in Plant Science, 8, 407. https://doi.org/10.3389/fpls.2017.00407

Fang, H., Liu, Z., Long, Y., Liang, Y., Jin, Z., Zhang, L., … Pei, Y. (2017). The Ca 2+ /calmodulin2-binding transcription factor TGA3 elevates LCD expression and H 2 S production to bolster Cr 6+ tolerance in Arabidopsis. The Plant Journal, 91(6), 1038–1050. https://doi.org/10.1111/tpj.13627

Steiger, A. K., Marcatti, M., Szabo, C., Szczesny, B., & Pluth, M. D. (2017). Inhibition of Mitochondrial Bioenergetics by Esterase-Triggered COS/H 2 S Donors. ACS Chemical Biology, 12(8), 2117–2123. https://doi.org/10.1021/acschembio.7b00279

Murine strain differences in inflammatory angiogenesis of internal wound in diabetes. (2017). Biomedicine & Pharmacotherapy, 86, 715–724. https://doi.org/10.1016/J.BIOPHA.2016.11.146

Pokrzywinski, K. L., Tilney, C. L., Warner, M. E., & Coyne, K. J. (2017). Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA. Scientific Reports, 7(1), 45102. https://doi.org/10.1038/srep45102

da Silva, C. J., Batista Fontes, E. P., & Modolo, L. V. (2017). Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana. Plant Science, 256, 148–159. https://doi.org/10.1016/j.plantsci.2016.12.011

Olson, K. R., Gao, Y., DeLeon, E. R., Arif, M., Arif, F., Arora, N., & Straub, K. D. (2017). Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS). Redox Biology, 12, 325–339. https://doi.org/10.1016/j.redox.2017.02.021

Wan, F., Shi, M., & Gao, H. (2017). Loss of OxyR reduces efficacy of oxygen respiration in Shewanella oneidensis. Scientific Reports, 7(1), 42609. https://doi.org/10.1038/srep42609

Maiocchi, S. L., Morris, J. C., Rees, M. D., & Thomas, S. R. (2017). Regulation of the nitric oxide oxidase activity of myeloperoxidase by pharmacological agents. Biochemical Pharmacology, 135, 90–115. https://doi.org/10.1016/j.bcp.2017.03.016

Santos, S. S., Jesus, R. L. C., Simões, L. O., Vasconcelos, W. P., Medeiros, I. A., Veras, R. C., … Silva, D. F. (2017). NO production and potassium channels activation induced by Crotalus durissus cascavella underlie mesenteric artery relaxation. Toxicon, 133, 10–17. https://doi.org/10.1016/j.toxicon.2017.04.010

Bertozo, L. de C., Zeraik, M. L., & Ximenes, V. F. (2017). Dansylglycine, a fluorescent probe for specific determination of halogenating activity of myeloperoxidase and eosinophil peroxidase. Analytical Biochemistry, 532, 29–37. https://doi.org/10.1016/j.ab.2017.05.029

Mogen, A. B., Carroll, R. K., James, K. L., Lima, G., Silva, D., Culver, J. A., … Rice, K. C. (2017). S taphylococcus aureus nitric oxide synthase (saNOS) modulates aerobic respiratory metabolism and cell physiology. Molecular Microbiology, 105(1), 139–157. https://doi.org/10.1111/mmi.13693

Huang, P., Shen, Z., Yu, W., Huang, Y., Tang, C., Du, J., & Jin, H. (2017). Hydrogen Sulfide Inhibits High-Salt Diet-Induced Myocardial Oxidative Stress and Myocardial Hypertrophy in Dahl Rats. Frontiers in Pharmacology, 08, 128. https://doi.org/10.3389/fphar.2017.00128

Zadehvakili, B., McNeill, S. M., Fawcett, J. P., & Giles, G. I. (2016). The design of redox active thiol peroxidase mimics: Dihydrolipoic acid recognition correlates with cytotoxicity and prooxidant action. Biochemical Pharmacology, 104, 19–28. https://doi.org/10.1016/j.bcp.2016.01.012

Xu, T., Scafa, N., Xu, L.-P., Zhou, S., Abdullah Al-Ghanem, K., Mahboob, S., … Zhang, X. (2016). Electrochemical hydrogen sulfide biosensors. The Analyst, 141(4), 1185–1195. https://doi.org/10.1039/C5AN02208H

Oliveira, H. C., Gomes, B. C. R., Pelegrino, M. T., & Seabra, A. B. (2016). Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide, 61, 10–19. https://doi.org/10.1016/j.niox.2016.09.010

Xie, L., Feng, H., Li, S., Meng, G., Liu, S., Tang, X., … Ji, Y. (2016). SIRT3 Mediates the Antioxidant Effect of Hydrogen Sulfide in Endothelial Cells. Antioxidants & Redox Signaling, 24(6), 329–343. https://doi.org/10.1089/ars.2015.6331

Song, R., Liu, G., Li, X., Xu, W., Liu, J., & Jin, H. (2016). Elevated Inducible Nitric Oxide Levels and Decreased Hydrogen Sulfide Levels Can Predict the Risk of Coronary Artery Ectasia in Kawasaki Disease. Pediatric Cardiology, 37(2), 322–329. https://doi.org/10.1007/s00246-015-1280-8

Silveira, N. M., Frungillo, L., Marcos, F. C. C., Pelegrino, M. T., Miranda, M. T., Seabra, A. B., … Ribeiro, R. V. (2016). Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit. Planta, 244(1), 181–190. https://doi.org/10.1007/s00425-016-2501-y

DeLeon, E. R., Gao, Y., Huang, E., Arif, M., Arora, N., Divietro, A., … Olson, K. R. (2016). A case of mistaken identity: are reactive oxygen species actually reactive sulfide species? American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 310(7), R549–R560. https://doi.org/10.1152/ajpregu.00455.2015

Meng, G., Xiao, Y., Ma, Y., Tang, X., Xie, L., Liu, J., … Ji, Y. (2016). Hydrogen Sulfide Regulates Krüppel-Like Factor 5 Transcription Activity via Specificity Protein 1 S-Sulfhydration at Cys664 to Prevent Myocardial Hypertrophy. Journal of the American Heart Association, 5(9). https://doi.org/10.1161/JAHA.116.004160

Ultrasonic micro-droplet release of matrix bound food derived antimicrobials. (2016).

Deng, Q., Xiang, H.-J., Tang, W.-W., An, L., Yang, S.-P., Zhang, Q.-L., & Liu, J.-G. (2016). Ruthenium nitrosyl grafted carbon dots as a fluorescence-trackable nanoplatform for visible light-controlled nitric oxide release and targeted intracellular delivery. Journal of Inorganic Biochemistry, 165, 152–158. https://doi.org/10.1016/J.JINORGBIO.2016.06.011

Wonoputri, V., Gunawan, C., Liu, S., Barraud, N., Yee, L. H., Lim, M., & Amal, R. (2016). Iron Complex Facilitated Copper Redox Cycling for Nitric Oxide Generation as Nontoxic Nitrifying Biofilm Inhibitor. ACS Applied Materials & Interfaces, 8(44), 30502–30510. https://doi.org/10.1021/acsami.6b10357

Nguyen, T.-K., Selvanayagam, R., Ho, K. K. K., Chen, R., Kutty, S. K., Rice, S. A., … Boyer, C. (2016). Co-delivery of nitric oxide and antibiotic using polymeric nanoparticles. Chem. Sci., 7(2), 1016–1027. https://doi.org/10.1039/C5SC02769A

Chen, G., Yang, L., Zhong, L., Kutty, S., Wang, Y., Cui, K., … Bin, J. (2016). Delivery of Hydrogen Sulfide by Ultrasound Targeted Microbubble Destruction Attenuates Myocardial Ischemia-reperfusion Injury. Scientific Reports, 6(1), 30643. https://doi.org/10.1038/srep30643

Zhang, W., Zhang, Y. S., Bakht, S. M., Aleman, J., Shin, S. R., Yue, K., … Khademhosseini, A. (2016). Elastomeric free-form blood vessels for interconnecting organs on chip systems. Lab on a Chip, 16(9), 1579–1586. https://doi.org/10.1039/C6LC00001K

Huang, P., Chen, S., Wang, Y., Liu, J., Yao, Q., Huang, Y., … Jin, H. (2015). Down-regulated CBS/H2S pathway is involved in high-salt-induced hypertension in Dahl rats. Nitric Oxide, 46, 192–203. https://doi.org/10.1016/j.niox.2015.01.004

Zong, Y., Huang, Y., Chen, S., Zhu, M., Chen, Q., Feng, S., … Jin, H. (2015). Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt. Oxidative Medicine and Cellular Longevity, 2015, 1–11. https://doi.org/10.1155/2015/754670

Park, Y. M., Lee, H. J., Jeong, J.-H., Kook, J.-K., Choy, H. E., Hahn, T.-W., & Bang, I. S. (2015). Branched-chain amino acid supplementation promotes aerobic growth of Salmonella Typhimurium under nitrosative stress conditions. Archives of Microbiology, 197(10), 1117–1127. https://doi.org/10.1007/s00203-015-1151-y

Wonoputri, V., Gunawan, C., Liu, S., Barraud, N., Yee, L. H., Lim, M., & Amal, R. (2015). Copper Complex in Poly(vinyl chloride) as a Nitric Oxide-Generating Catalyst for the Control of Nitrifying Bacterial Biofilms. ACS Applied Materials & Interfaces, 7(40), 22148–22156. https://doi.org/10.1021/acsami.5b07971

Ostrakhovitch, E. A., Akakura, S., Sanokawa-Akakura, R., Goodwin, S., & Tabibzadeh, S. (2015). Dedifferentiation of cancer cells following recovery from a potentially lethal damage is mediated by H2S–Nampt. Experimental Cell Research, 330(1), 135–150. https://doi.org/10.1016/j.yexcr.2014.09.027

Sun, Y., Huang, Y., Zhang, R., Chen, Q., Chen, J., Zong, Y., … Jin, H. (2015). Hydrogen sulfide upregulates KATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats. Journal of Molecular Medicine, 93(4), 439–455. https://doi.org/10.1007/s00109-014-1227-1

Cho, Y., Park, Y. M., Barate, A. K., Park, S.-Y., Park, H. J., Lee, M. R., … Holden, D. (2015). The role of rpoS , hmp , and ssrAB in Salmonella enterica Gallinarum and evaluation of a triple-deletion mutant as a live vaccine candidate in Lohmann layer chickens. Journal of Veterinary Science, 16(2), 187. https://doi.org/10.4142/jvs.2015.16.2.187

Beltowski, J., Guranowski, A., Jamroz-Wisniewska, A., Wolski, A., & Halas, K. (2015). Hydrogen-sulfide-mediated vasodilatory effect of nucleoside 5′-monophosphorothioates in perivascular adipose tissue. Canadian Journal of Physiology and Pharmacology, 93(7), 585–595. https://doi.org/10.1139/cjpp-2014-0543

Mocca, B., Yin, D., Gao, Y., & Wang, W. (2015). Moraxella catarrhalis -produced nitric oxide has dual roles in pathogenicity and clearance of infection in bacterial-host cell co-cultures. Nitric Oxide, 51, 52–62. https://doi.org/10.1016/j.niox.2015.10.001

Orellano, L. A. A., Almeida, S. A., Campos, P. P., & Andrade, S. P. (2015). Angiopreventive versus angiopromoting effects of allopurinol in the murine sponge model. Microvascular Research, 101, 118–126. https://doi.org/10.1016/j.mvr.2015.07.003

Tan, L., Wan, A., Zhu, X., & Li, H. (2014). Visible light-triggered nitric oxide release from near-infrared fluorescent nanospheric vehicles. The Analyst, 139(13), 3398. https://doi.org/10.1039/c4an00275j

Liu, S., Gu, T., Fu, J., Li, X., Chronakis, I. S., & Ge, M. (2014). Quantum dots-hyperbranched polyether hybrid nanospheres towards delivery and real-time detection of nitric oxide. Materials Science and Engineering: C, 45, 37–44. https://doi.org/10.1016/j.msec.2014.08.070

Sanokawa-Akakura, R., Ostrakhovitch, E. A., Akakura, S., Goodwin, S., & Tabibzadeh, S. (2014). A H 2 S-Nampt Dependent Energetic Circuit Is Critical to Survival and Cytoprotection from Damage in Cancer Cells. https://doi.org/10.1371/journal.pone.0108537

Dantas, B. P. V, Ribeiro, T. P., Assis, V. L., Furtado, F. F., Assis, K. S., Alves, J. S., … Braga, V. A. (2014). Vasorelaxation induced by a new naphthoquinone-oxime is mediated by NO-sGC-cGMP pathway. Molecules (Basel, Switzerland), 19(7), 9773–9785. https://doi.org/10.3390/molecules19079773

Dunlop, K., Gosal, K., Kantores, C., Ivanovska, J., Dhaliwal, R., Desjardins, J.-F., … Jankov, R. P. (2014). Therapeutic hypercapnia prevents inhaled nitric oxide-induced right-ventricular systolic dysfunction in juvenile rats. Free Radical Biology and Medicine, 69, 35–49. https://doi.org/10.1016/j.freeradbiomed.2014.01.008

Yarmolinsky, D., Brychkova, G., Kurmanbayeva, A., Bekturova, A., Ventura, Y., Khozin-Goldberg, I., … Sagi, M. (2014). Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants. Plant Physiology, 165(4), 1505–1520. https://doi.org/10.1104/pp.114.241356

Diniz, T., Pereira, A., Capettini, L., Santos, M., Nagem, T., Lemos, V., & Cortes, S. (2013). Mechanism of the Vasodilator Effect of Mono-oxygenated Xanthones: A Structure-Activity Relationship Study. Planta Medica, 79(16), 1495–1500. https://doi.org/10.1055/s-0033-1350803

Process of food preservation with hydrogen sulfide. (2013).

Dick, A. S., Ivanovska, J., Kantores, C., Belcastro, R., Keith Tanswell, A., & Jankov, R. P. (2013). Cyclic stretch stimulates nitric oxide synthase-1-dependent peroxynitrite formation by neonatal rat pulmonary artery smooth muscle. Free Radical Biology and Medicine, 61, 310–319. https://doi.org/10.1016/j.freeradbiomed.2013.04.027

Apparatuses, methods, and compositions for the treatment and prophylaxis of chronic wounds. (2013).

Olson, K. R., DeLeon, E. R., Gao, Y., Hurley, K., Sadauskas, V., Batz, C., & Stoy, G. F. (2013). Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing. Am J Physiol Regul Integr Comp Physiol, 305, 592–603. https://doi.org/10.1152/ajpregu.00421.2012

Araújo, F. A., Rocha, M. A., Capettini, L. S. A., Campos, P. P., Ferreira, M. A. N. D., Lemos, V. S., & Andrade, S. P. (2013). 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitor (fluvastatin) decreases inflammatory angiogenesis in mice. APMIS, 121(5), 422–430. https://doi.org/10.1111/apm.12031

Aljuhani, N., Michail, K., Karapetyan, Z., & Siraki, A. G. (2013). The effect of bicarbonate on menadione-induced redox cycling and cytotoxicity: potential involvement of the carbonate radical. Canadian Journal of Physiology and Pharmacology, 91(10), 783–790. https://doi.org/10.1139/cjpp-2012-0254

Tan, L., Wan, A., & Li, H. (2013). Ag 2 S Quantum Dots Conjugated Chitosan Nanospheres toward Light-Triggered Nitric Oxide Release and Near-Infrared Fluorescence Imaging. Langmuir, 29(48), 15032–15042. https://doi.org/10.1021/la403028j

Catalytic oxidation of sulphide species. (2012).

Andrews, A. M. (2012). SHEAR STRESS-INDUCED NITRIC OXIDE (NO) PRODUCTION: MECHANISMS AND THE INHIBITORY EFFECT OF CHOLESTEROL ENRICHMENT.

An, J., Du, J., Wei, N., Guan, T., Camara, A. K. S., & Shi, Y. (2012). Differential Sensitivity to LPS-Induced Myocardial Dysfunction in the Isolated Brown Norway and DAHL S Rat Hearts. Shock, 37(3), 325–332. https://doi.org/10.1097/SHK.0b013e31823f146f

Liu, J. T., Song, E., Xu, A., Berger, T., Mak, T. W., Tse, H.-F., … Wang, Y. (2012). Lipocalin-2 deficiency prevents endothelial dysfunction associated with dietary obesity: role of cytochrome P450 2C inhibition. British Journal of Pharmacology, 165(2), 520–531. https://doi.org/10.1111/j.1476-5381.2011.01587.x

Fox, B., Schantz, J.-T., Haigh, R., Wood, M. E., Moore, P. K., Viner, N., … Whiteman, M. (2012). Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? Journal of Cellular and Molecular Medicine, 16(4), 896–910. https://doi.org/10.1111/j.1582-4934.2011.01357.x

Liu, J. T., Song, E., Xu, A., Berger, T., Mak, T. W., Tse, H.-F., … Wang, Y. (2012). Lipocalin-2 deficiency prevents endothelial dysfunction associated with dietary obesity: role of cytochrome P450 2C inhibition. British Journal of Pharmacology, 165(2), 520–531. https://doi.org/10.1111/j.1476-5381.2011.01587.x

Marazioti, A., Bucci, M., Coletta, C., Vellecco, V., Baskaran, P., Szabó, C., … Papapetropoulos, A. (2011). Inhibition of Nitric Oxide–Stimulated Vasorelaxation by Carbon Monoxide-Releasing Molecules. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(11), 2570–2576. https://doi.org/10.1161/ATVBAHA.111.229039

Young, L. H., Chen, Q., & Weis, M. T. (2011). Direct Measurement of Hydrogen Peroxide (H 2 O 2 ) or Nitric Oxide (NO) Release: A Powerful Tool to Assess Real-time Free Radical Production in Biological Models. Am. J. Biomed. Sci, 3(1), 40–48. https://doi.org/10.5099/aj110100040

Araújo, F. A., Rocha, M. A., Ferreira, M. A., Campos, P. P., Capettini, L. S., Lemos, V. S., & Andrade, S. P. (2011). Implant-induced intraperitoneal inflammatory angiogenesis is attenuated by fluvastatin. Clinical and Experimental Pharmacology and Physiology, 38(4), 262–268. https://doi.org/10.1111/j.1440-1681.2011.05496.x

Leistikow, R. L., Morton, R. A., Bartek, I. L., Frimpong, I., Wagner, K., & Voskuil, M. I. (2010). The Mycobacterium tuberculosis DosR Regulon Assists in Metabolic Homeostasis and Enables Rapid Recovery from Nonrespiring Dormancy. Journal of Bacteriology, 192(6), 1662–1670. https://doi.org/10.1128/JB.00926-09

Honaker, R. W., Dhiman, R. K., Narayanasamy, P., Crick, D. C., & Voskuil, M. I. (2010). DosS Responds to a Reduced Electron Transport System To Induce the Mycobacterium tuberculosis DosR Regulon. Journal of Bacteriology, 192(24), 6447–6455. https://doi.org/10.1128/JB.00978-10

Andrews, A. M., Jaron, D., Buerk, D. G., Kirby, P. L., & Barbee, K. A. (2010). Direct, real-time measurement of shear stress-induced nitric oxide produced from endothelial cells in vitro. Nitric Oxide, 23(4), 335–342. https://doi.org/10.1016/j.niox.2010.08.003

Pandolfi, C., Pottosin, I., Cuin, T., Mancuso, S., & Shabala, S. (2010). Specificity of Polyamine Effects on NaCl-induced Ion Flux Kinetics and Salt Stress Amelioration in Plants. Plant and Cell Physiology, 51(3), 422–434. https://doi.org/10.1093/pcp/pcq007

Whiteman, M., Li, L., Rose, P., Tan, C.-H., Parkinson, D. B., & Moore, P. K. (2010). The Effect of Hydrogen Sulfide Donors on Lipopolysaccharide-Induced Formation of Inflammatory Mediators in Macrophages. Antioxidants & Redox Signaling, 12(10), 1147–1154. https://doi.org/10.1089/ars.2009.2899

Lateef, H., Aslam, M. N., Stevens, M. J., & Varani, J. (2005). Pretreatment of diabetic rats with lipoic acid improves healing of subsequently-induced abrasion wounds. Archives of Dermatological Research, 297(2), 75–83. https://doi.org/10.1007/s00403-005-0576-6

"The Effects of Modulating Endothelial Nitric Oxide Synthese (eNOS) Activity and Coupling in Extracorporeal Shock Wave Lithotripsy (ESWL)" by Alexandra Lopez. (n.d.). Retrieved November 12, 2018, from https://works.bepress.com/qian_chen/25/

 

RelatedItems

TBR4100

TBR4100

Four-Channel Free Radical Analyzer

View details...

Our Clients Include:

GlaxoSmithKline
University College London
Novartis
Imperial College
University of Cambridge
University of Oxford

Keep in Touch

We promise NEVER to share your details with anyone. You can opt out at any time.